VMAS

Vessel Monitoring and Advisory Services

e-Nav Underway 2013

Robert Tremlett
Purpose of VMAS

• To determine and mitigate the risk of vessels to;
 – Safety of life
 – Other Vessels
 – Environment
 – Aquaculture
 – Coastlines
 – Offshore Infrastructure
Risks (VM)

- Ship carrying out operations contrary to regulations
- Adverse weather
 - Ship encountering heavy seas.
 - Ships encountering ice or experiencing ice accretion
 - Ships encountering restricted visibility
 - Ships not adjusting routing to compensate for weather.
- Severely hampered vessels
 - Engine breakdown
 - Structural failure
- Unreported deliberate incapacitation
 - Engine maintenance
- History of “risk” through intelligence of company, cargo or vessel
 - Engine reliability
 - Cargo residues – Hold / Tank cleaning
Risk Mitigation - Static Data sources

- Static / Historic data sources.
 - Engine Failures
 - Casualty records
 - Changes in velocity
 - Port State
 - Port State Control records
 - History of ships path
 - Terrestrial or Satellite AIS
 - Cargo
 - Last ports of call

- From Ship ???
- From Shore – More reliable
Risk Mitigation-Dynamic Data Sources

- Dynamic data Sources
 - Frequent or preferably continuous Position & Velocity vital for ascertaining whether the vessels is navigating in a safe manner.
 - Indirect
 - Exchange of information with other states
 - Direct
 - Periodic Ship Reporting (Global)
 - Terrestrial AIS networks (<200NM)
 - Satellite AIS (Global but Limited ability in dense areas)
 - Radar (Other than OHR, limited to < 100NM)
 - Periodic Dynamic data feed (AIS extracts) embedded within Communication Satellite data stream.
Access to Dynamic data Tracking

• Method of data access- AIS, S-AIS or other (VITAL)
 – Own administration subscription to service provider
 – Other States that may have information through another service provider.
 • Exchange of information necessary to ensure that the latest dynamic information is available to enable proper evaluation of risk.
 – Breach of commercial agreements?

• Data
 – Velocity, Ships heading, ROR Navigation Status, Draught......
 – Interpretation - Intelligence
 • Path and route consistent?
 • Ships heading and track consistent?
 • Unexpected deviations of velocity?
Risk Mitigation – Data Linking

• Data Linking
 – Tagging of the location of static information to dynamic data of a Vessel being tracked.
 • Tracking Vessels using appropriate technological solutions
 – S-AIS, AIS, or Velocity and ships heading by other means
• Access to Static information
 – Server providing continuous update of the location of latest information on;
 – Evolved traffic / ship monitoring (AIS SAT AIS)
 – Exchange of Port State Control
 – Exchange of “risk rating” on vessels
 – Exchange of Hazardous events
 – Exchange of vessel Incidents
 – Exchange of Traceable Voyage History
 – Exchange of Cargo Information
 – Conformity to Maritime Advisory Services,
 – Hull,
 – Cargo,
 – Owner,
 – Passengers etc...
Access to Static Information

• Method to access Information
 – Data Index exchange
 • Linking Coastal State VMAS through National or regional Single Windows to source of information.
 • Enabling source of information to be constantly updated, but not the detailed information.
 – Intranet to access static information via National or Regional single windows to provide access to all detailed information as and when necessary.
Advisory Services (AS)

• Advisory service
 – Needed to provide advice to ALL Vessels whatever their size or type.
 • In such a manner it can not be confused
 – Language independent graphical portrayal
 – Provide Multilingual Alpha numeric information » in user language.
 – Advisory Information required
 • Recommended actions for Routing, Speed
 – Based on sea state prognosis, ship type, cargo and vessels history, availability of Pilots / Port / Berth.
 • Automatic update of Maritime Safety Information
 – Weather forecasts (Ice, sea state, visibility)
 – Status of Aids to navigation
 – Chart corrections
Possible Solutions *(Static Data)*

- Use International LRIT Data exchange and National data centers.
 - Fit for purpose
 - Proven to be secure
 - Existing infrastructure
 - No additional costs
 - To facilitate index via single windows;
 - To where categories of information is held.
 - To exchange of dynamic information on vessels (S-AIS or Satellite communications streamed AIS)
 - Coastal, Port States and Flag States may have an interest in whether the vessel has taken advice offered or has chosen to ignore it.
 - Status of conformity pushed via IDE to the data centre of the flag State.
 - Where cooperation exists, status pulled using IDE by Port or Coastal State.

- Create International Maritime Intranet for access to detailed information located by use of IDE
Language Independent / Multilingual

• Requires Data libraries
 – Aboard and ashore enabling the automatic coding and decoding of messages to facilitate;
 – Codified messages using standardized data libraries for safety of navigation messaging
 • Data libraries coded from any language
 – language selected by operator
 • Communication of information is minimized.
 – Main information stored within data libraries.
 • Portrayal
 – Decoded into any language
 – Decoded into simple schematic or rich data images
 » Graphical portrayal via ECDIS or other display

– Precedence - International Code of Signals
– Protocol IHO S-100?
Possible Solutions - Communicate

- Terrestrial and satellite services
 - Provide **ALL** users with reliable robust services having redundancy options.
 - **Digital VDE and VDES**
 - Redundancy, where required for satellite services can be provided by Surface or Airborne assets in event of satellite constellation failure.
 - Intelligent use of bandwidth and possible use of multi-hop VHF protocols.
 - Need to define how VDE and VDES can be efficiently used to support e-Navigation – ship ship, coast ship, Satellite ship.
 - Need to quantify scope and scale of VDE.
 - **VDE and VDES could be the backbone of communications for all safety of navigation GLOBALLY for ALL vessels,**
 - **What about HF for exchange of small packets information, could this be used as a robust back up carrier driving data libraries?**
VDE Multi-hop – (SEAMAX 2004)
VDE Optimization

• Efficient VDE requires “Novel Spectrum protocols” offering
 – Broadband when in range of terrestrial Base Station
 • 150 khz
 – Intelligent use of bandwidth when not in range of base station
 for multichannel low bandwidth data exchange
 – Base Station could be a Satellite or Coastal
 • Instead of 25KHz
 – Coastal - 6.25 Khz or even 3.125 KHz instead offering multiple data channels.
 – Satellite 12.5 Khz or 6.25 KHz (if feasible)
 – When monitoring / communication vessel clusters
 • Nodes ONLY when joining or leaving peer group.
 • Minimize localization part of message.
 • Maximize Number of channels to facilitate monitoring of several thousands of nodes.
Conclusions

• To facilitate VMAS
 – Adopt International Data Exchange designed for LRIT
 • We can still use the infrastructure to access LRIT
 – Use Single Windows and secure Intranet
 – Maximize number of vessels that can receive MSI
 • ALL VESSELS
 – Install Data libraries ashore and aboard (SDR)
 • Create small data packet messaging to drive them
 – Provide intelligent VHF protocols for VDE
 • Investigate use of HF?
 – Investigate the scale and scope of data.
 • Needed to define appropriate protocols and carrier needs.
 – Provide harmonization for fusion of dynamic and static information
VMAS is a classical e-Navigation App!!!

- The components needed will also facilitate other e-Navigation applications.
- Bon Voyage!