Integrating IEC and ISO information models into the S-100 Common Maritime Data Structure

e-Navigation Underway International 2016
February 2-4, 2016

Ørnulf Jan Rødseth, MSc
Senior Scientist, MARINTEK, Trondheim – Norway
OrnulfJan.Rodseth@marintek.sintef.no
The Maritime Technology Center
Trondheim, Norway

Integrated operations laboratory

Towing tank

MARINTEK
Norwegian Marine Technology Research Institute

NTNU
Norwegian University of Science and Technology

Energy and engine laboratory

Ocean basin

Cavitation tunnel

Structural testing
- Route plan exchange VTMIS-Ship
- Integration with onboard data networks (IEC 61162)
- Possibly exchange of other operational information (ISO 28005)
Premise

The Common Maritime Data Structure (CMDS) is a common information model for e-navigation, all its maritime service portfolios and the five prioritized e-navigation solutions.

- **S1:** improved, harmonized and user-friendly bridge design;
- **S2:** means for standardized and automated reporting;
- **S3:** improved reliability, resilience and integrity of bridge equipment and navigation information;
- **S4:** integration and presentation of available information in received via communication equipment; and
- **S9:** improved Communication of VTS Service Portfolio (not limited to VTS stations).

However, there are other international standards already in use – also by IMO.
We want to use and support the CMDS. What issues do we have to think about?

- How do we incorporate the different domains (what domains)?

- S-100 is a geographic information system (GIS) type information modelling framework: How can it be used for operational data (and what is operational data)?

- How to integrate existing information models (IEC 61162, ISO 28005) into CMDS?
What domains do we need to consider?

- Electronic Nautical Charts and static/dynamic overlays
- Ship reporting (FAL, SOLAS, Bulk loading/unloading, Waste...)
- Ship automation systems (engine, energy...)
- Onboard Bridge Data Networks
- Ship safety systems (fire, ballast, cargo...)
- Commercial and technical operations (noon at sea, port reports, voyage orders...)

MARINTEK
Problem: Semantics change between domains!

Electronic Nautical Charts and static/dynamic overlays

Ship reporting (FAL, SOLAS, Bulk loading/unloading, Waste...)

Onboard Bridge Data Networks

Ship position:
1. Reporting: One "rough" position is enough: Simple object
2. ENC: Position is an attribute and may need reference point and ship size in addition
3. Network: Any number of positions with different properties: Many objects
We may need meta-models?
We want to use and support the CMDS. What issues do we have to think about?

• How do we incorporate the different domains (what domains)?

• S-100 is a geographic information system (GIS) type information modelling framework: How can it be used for operational data (and what is operational data)?

• How to integrate existing information models (IEC 61162, ISO 28005) into CMDS?
Operational data?

- Several different information domains, not all geospatial in nature
- Links to even more domains outside e-navigation/e-maritime

ISO 19848 NP Machinery data

OASIS, GS1 …
What do we do in the area of ship reporting?

• FAL Convention issued in 1967 – Paper FAL forms
• FAL Compendium issued in 2001, covering EDIFACT based ship clearance
• New edition of FAL Compendium in 2014, also referencing ISO 28005 XML format
• WCO takes on editorial responsibility for Compendium in 2015
In the direction of a normalized information model

- Each object has stand-alone semantics as far as possible
- Standard representation (syntax)
- Reuse objects in different report types, adding more specific semantics in each

<table>
<thead>
<tr>
<th>Description</th>
<th>ISO 28005 Data Type</th>
<th>FAL 1</th>
<th>FAL 2</th>
<th>FAL 3</th>
<th>FAL 4</th>
<th>FAL 5</th>
<th>FAL 6</th>
<th>FAL 7</th>
<th>ISPS</th>
<th>BLU</th>
<th>WASTE</th>
<th>SR cod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact information of ship’s agent</td>
<td>AgentType</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air draught</td>
<td>AirDraughtType</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrival draughts</td>
<td>ArrivalDraughtType</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean ballast water</td>
<td>BallastStatusType</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam</td>
<td>BeamType</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loading plan, requirements and details</td>
<td>BulkLoadUnloadDataType</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purpose of call</td>
<td>CallPurposeType</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargo description list</td>
<td>CargoDataType</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brief description of cargo</td>
<td>CargoOverviewType</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certificate of registry</td>
<td>CertificateType (RegistryCertificate)</td>
<td></td>
</tr>
<tr>
<td>Company name</td>
<td>CompanyType</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Crew list</td>
<td>CrewListType</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departure draughts</td>
<td>DepartureDraughtType</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Product specification could be "Mandatory Reporting"
No obvious portrayal?

- Individual objects may have portrayals.

- Reporting requirement (24h, 72h, line) could be rendered in ENC as point on voyage.

- Product specification would specify how a certain reporting message can be assembled from CMDS elements.
We want to use and support the CMDS. What issues do we have to think about?

• How do we incorporate the different domains (what domains)?

• S-100 is a geographic information system (GIS) type information modelling framework: How can it be used for operational data (and what is operational data)?

• How to integrate existing information models (IEC 61162, ISO 28005) into CMDS?
IEC 61162 in S-100 (in IEC 61162-460 configuration)

- Reporting to and from shore.
- Transfer to and from other ship systems.
- Describe internal data exchanges.
Issues that can cause problems

- Streaming data vs. files
- Levels of detail in semantics

<table>
<thead>
<tr>
<th></th>
<th>Streaming</th>
<th>Semantic details</th>
</tr>
</thead>
<tbody>
<tr>
<td>To/from shore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To/from ship</td>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>Network internal</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Semantic details

System configuration context

Usage context (time sequence ...)

Sentence context (formatter, talker ...)

Data object
- Attribute
- Attribute

Data object
- Attribute
- Attribute

- Full context may not be known: Dependent on system configuration and usage

- Complex context: Position fix is dependent on source, integration, time of acquisition, quality of signal, antenna position etc.
Existing data model integration in CMDS

- The ISO 28005 ship reporting case is relatively straightforward. However, semantic compatibility and mapping may be an issue.

- IEC 61162 is more complex:
 - Much data is operational and not geographic (as ISO 28005).
 - Network context is complex and not necessarily known by gateway.
 - Attribute/object structure may not lend itself easily to a standard structure.
 - Streaming data is an issue also here.
IEC TC80 has established WG17 to look at these issues

- Will start with route exchange message from IEC 61174.
- May concentrate on ship-shore exchanges.
- Will investigate more complex methods.
- ISO TC8 will take up results and methods.
We want to use and support the CMDS. What issues do we have to think about?

• How do we incorporate the different domains (what domains)?

• S-100 is a geographic information system (GIS) type information modelling framework: How can it be used for operational data (and what is operational data)?

• How to integrate existing information models (IEC 61162, ISO 28005) into CMDS?

Sorry: Only the problems and no clear solutions!

Thank you for your attention!